Y-27632 是一种 ATP 竞争性的 ROCK-I 和 ROCK-II 抑制剂,对 ROCK-I 和 ROCK-II 的 Ki 值分别为 220 nM 和 300 nM。Y-27632常用于干细胞和类器官的培养,可抑制细胞内 Rho-ROCK 介导的肌球蛋白过度活化以及由此产生的细胞收缩和死亡,从而促进干细胞和类器官的存活并提高克隆形成效率。
Science. 2025 Sep 04;389(6764):eadr8753.
Cancer Cell. 2025 Jul 16; .
Nat Biotechnol. 2025 Oct 28; .
Nat Cancer. 2025 Jun 23; .
Nat Immunol. 2025 May 30; .
The IL-22–oncostatin M axis promotes intestinal inflammation and tumorigenesis
Cell Stem Cell. 2025 Jun 10; .
Human airway submucosal gland organoids to study respiratory inflammation and infection
Cancer Res. 2025 Jun 24; .
The C-terminal Kinase Domain-Binding and Suppression Motif Prevents Constitutive Activation of FGFR2
Nat Commun. 2025 Oct 15;16(1):9168.
Loss of BPTF restores estrogen response and suppresses metastasis of mammary tumors
Nat Commun. 2025 May 03;16(1):4131.
Extrusion of BMP2+ surface colonocytes promotes stromal remodeling and tissue regeneration
Nat Commun. 2025 May 29;16(1):4647.
High resolution clonal architecture of hypomutated Wilms tumours
Adv Sci (Weinh). 2025 Jun 04; .
Label‐Free 3D Photoacoustic Imaging of Tumor Organoids for Volumetric Drug Screening
Adv Sci (Weinh). 2025 Sep 29; .
Organoid Modeling of Mouse Anterior Tongue Epithelium Reveals Regional and Cellular Identities
Adv Sci (Weinh). 2025 Sep 17; .
Adv Sci (Weinh). 2025 Oct 13; .
J Clin Invest. 2025 Jun 16;135(12):e185119.
RSK1-driven TRIM28/E2F1 feedback loop promotes castration-resistant prostate cancer progression
Chemical Engineering Journal. 2025 Apr 24.
Chemical Engineering Journal. 2025 Sep 22; .
Biomaterials. 2025 Sep 17; .
Gut Microbes. 2025 May 05;17(1):2494717.
Cell Rep Med. 2025 Feb 04;6(2):101941.
Cell Rep Med. 2025 Jan 21;6(1):101878.
Sci Adv. 2025 Mar 28;11(13):eads7543.
Clin Cancer Res. 2025 Sep 22; .
Patient-derived organoids predict treatment response in metastatic colorectal cancer
Genome Biol. 2025 Jun 03;26(1):154.
Proc Natl Acad Sci U S A. 2025 Oct 21;122(42):e2507500122.
Invasin-functionalized PIC hydrogels enable long-term 3D culture of epithelial organoids
EMBO Mol Med. 2025 Aug 26; .
Cell Death Dis. 2025 Feb 25;16(1):128.
Cell Rep. 2025 Feb 19; .
Cell Reports. 2025 Sep 03; .
Early adipose tissue wasting in a preclinical model of human lung cancer cachexia
J Med Chem. 2025 Aug 26; .
Ecotoxicol Environ Saf. 2025 Oct 27; .
iScience. 2025 Mar 03; .
Sci Data. 2025 May 27;12(1):878.
Biochem Pharmacol. 2025 Aug 28; .
ACS Biomater Sci Eng. 2025 Jan 13;11(1):451-462.
Chem Biol Interact. 2025 Oct 10; .
Int. J. Mol. Sci. 2025 May 26;26(11), 5027.
The Development of 3D Primary Co-Culture Models of the Human Airway
PLoS Pathog. 2025 Jul 08; .
Mol Cancer Res. 2025 Jun 30; .
iScience. 2025 May 26; .
BMC Chem. 2025 Jun 09;19(1):162.
PLoS Genet. 2025 Mar 31;21(3):e1011652.
Generation of prostate cancer assembloids modeling the patient-specific tumor microenvironment
Sci Rep. 2025 Jan 17;15(1):2222.
Front Oncol. 2025 Jan 27;14:1497093.
Endocrinology. 2025 Jun 27; .
Canine adrenomedullary and pheochromocytoma organoids: a novel in vitro model
Cancer Res Commun. 2025 Jun 01;5(6):981-993.
Onco Targets Ther. 2025 Jun 06; .
Studying Immunogenic Cell Death in Human Colorectal Cancer Organoids
J Neurosci Methods. 2025 Feb 18;417:110404.
STAR Protoc. 2025 Jun 20;6(2):103883.
STAR Protoc. 2025 Jul 02; .
Bio Protoc. 2025 Jul 05;15(13):e5369.
Evaluation of In Vitro Cytotoxic Activity of CAR-T Cells Using Patient-Derived Organoids
Patent. CN119639667A 2025 Mar 18.
Patent. EP4507784A1 2025 Feb 19.
Patent. WO2025033911A1 2025 Feb 13.
Patent. US2025034496A1 2025 Jan 30.
Patent. KR20250040419A 2025 Mar 24.
Proquest. 2025 May 31; .
Patent. KR20250060485A 2025-05-07.
Patent. KR20250060495A 2025-05-07.
Nature. 2024 Jul 24;632(8024):411-418.
In vivo interaction screening reveals liver-derived constraints to metastasis
Cancer Cell. 2024 Mar 11;42(3):487-496.
Cell. 2024 Feb 1;187(3):712-732.e38.
Human fetal brain self-organizes into long-term expanding organoids
Nat Immunol. 2024 Apr 25;25(5):790-801.
Cell Stem Cell. 2024 Jan;S1934-5909(23)00438-1.
Human conjunctiva organoids to study ocular surface homeostasis and disease
Nat Metab. 2024 Aug 27;6(8):1529-1548.
The unique catalytic properties of PSAT1 mediate metabolic adaptation to glutamine blockade
Sci Transl Med. 2024 Apr 3;16(741):eadj5705.
Nat Commun. 2024 Feb;15(1):1231.
Nat Commun. 2024 Feb;15(1):1200.
Nat Commun. 2024 May 13;15(1):4034.
J Exp Med. 2024 Feb;221(3):e20231237.
Nat Protoc. 2024 Mar 19.
Nat Commun. 2024 Dec 18;15(1):10482.
Cell Rep Med. 2024 Apr 22.
Adv Sci. 2024 Jun 15.
Enzalutamide Sensitizes Castration-Resistant Prostate Cancer to Copper-Mediated Cell Death
Advanced Science. 2024 Jul 25.
Gut Microbes. 2024 Jul 16;16(1):2379566.
Cell Rep Med. 2024 Oct 15;5(10):101777.
Modeling lung adenocarcinoma metastases using patient-derived organoids
Sci Adv. 2024 Dec 13;10(50):eadq4274.
SRC kinase drives multidrug resistance induced by KRAS-G12C inhibition
Sci Adv. 2024 Nov 22;10(47):eadr4831.
Acoustic virtual 3D scaffold for direct-interacting tumor organoid–immune cell coculture systems
J Exp Clin Cancer Res. 2024 Feb 27;43(1):61.
J Exp Clin Cancer Res. 2024 Mar 19;43(1):85.
Anaplastic thyroid cancer spheroids as preclinical models to test therapeutics
Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2309902121.
Epidermal growth factor receptor (EGFR) is a target of the tumor-suppressor E3 ligase FBXW7
EMBO Mol Med. 2024 Jun 3.
A multispectral 3D live organoid imaging platform to screen probes for fluorescence guided surgery
J Immunother Cancer. 2024 Mar 21;12(3):e007538.
Cancer Lett. 2024 Jul 12.
Cancer Lett. 2024 Oct 02;605:217284.
Cell Rep. 2024 Jan;43(1):113614.
Cell Rep. 2024 Apr 23;43(4):114019.
Derivation of functional thymic epithelial organoid lines from adult murine thymus
Materials Today Bio. 2024 Sep 29;29:101262.
Biofabrication. 2024 Aug 07;16(4).
Cell Death Dis. 2024 Dec 18;15(12):893.
Cancer Biology. 2024 May.
The transcriptional landscape of metastatic hormone-naïve prostate cancer
Eur J Cancer. 2024 Oct 28.
Cell Rep. 2024 Nov 10.
J Pathol. 2024 Apr 4.
Phytomedicine. 2024 Oct 18.
Int J Cancer. 2024 Jan.
Int J Cancer. 2024 Mar 27.
J Cell Mol Med. 2024 May;28(9):e18374.
Cells. 2024 Jun 24.
Nutrients. 2024 Jul 25;16(12):1816.
Nutrients. 2024 Jun 9;16(12):1816.
Clin Epigenetics. 2024 Nov 10;16(1):156.
Clin Epigenetics. 2024 Nov 15.
Nutrition. 2024 Aug 29.
Cell Rep Methods. 2024 Jun 16.
Scientific Reports. 2024 Jun 26;14(7):999.
Virchows Archiv. 2024 Jul 09;28(7):e18190.
Head and Neck Pathology . 2024 Jul 02;20(4):e1011945.
J Mammary Gland Biol Neoplasia. 2024 May 2.
organoid. 2024 Apr 21.
biorxiv. 2024 Mar 26.
Infection of human organoids supports an intestinal niche for Chlamydia trachomatis
biorxiv. 2024 Mar 15.
Tuft cells act as regenerative stem cells in the human intestine
STAR Protoc. 2024 Jul 15;5(3):103189.
STAR Protoc. 2024 Oct 01.
Protocol for culturing patient-derived organoids of cervical cancer
STAR Protoc. 2024 Dec 20.
Protocol for generating a co-culture of macrophages with breast cancer tumoroids
bioRxiv. 2024 Oct 08.
BioRxiv. 2024 Nov 09.
NovumRNA: accurate prediction of non-canonical tumor antigens from RNA sequencing data
BioRxiv. 2024 Oct 30.
Nutrients. 2024 May 14;2023.02.24.529893.
Cell and Tissue Biology. 2024 Jun;Volume 18, 296-306.
Interaction of pRb and β-Catenin in Cancer and Normal Human Prostate Tissue
4 Medizinische Fakultät. 2024 Sep 03.
Patent. WO2024196251A1 2024 Sep 26.
Patent. CN118252922A 2024 Jun 28.
Patent. CN118127118A 2024 Jun 04.
Patent. CN117643594A 2024 Mar 05.
Patent. CN117844735A 2024 Apr 09.
Patent. KR102627833B1 2024 Jan 23.
Patent. EP4455665A1 2024 Oct 30.
Patent. KR102643748B1 2024 Mar 05.
Patent. AU2022413699A1 2024 Jul 04.
Patent. CN118995819A 2024 Nov 22.
Patent. CN114891735B 2024 Aug 13.
Patent. CN117050934B 2024 Jan 30.
Patent. CN114426949A 2024-04-16.
Nat Biotechnol. 2023 Feb 23.
Cancer Cell. 2023 Nov 13;41(11):1945-1962.e11.
Cancer Cell. 2023 Dec 11;41(12):2083-2099.e9.
Cell Res. 2023 Jun;33(6):464-478.
Signal Transduct Target Ther. 2023 May 19;8(1):187.
FBXW7β loss-of-function enhances FASN-mediated lipogenesis and promotes colorectal cancer growth
Cell Discov. 2023 Mar 7;9(1):26.
Nat Commun. 2023 May 27;14(1):3074.
Nat Commun. 2023 Jul 13;14(1):4193.
ACTL6A protects gastric cancer cells against ferroptosis through induction of glutathione synthesis
Nat Commun. 2023 Nov 28;14(1):7361.
Med. 2023 May 12;4(5):290-310.e12.
Nat Commun. 2023 Jun 16;14(1):3469.
J Exp Med. 2023 Nov 6;220(11):e20211743.
MYC is a clinically significant driver of mTOR inhibitor resistance in breast cancer
Adv Sci (Weinh). 2023 Jul 23;e2302640.
Sci Adv. 2023 Aug 2;9(31):eadf3566.
PHF8-GLUL axis in lipid deposition and tumor growth of clear cell renal cell carcinoma
Sci Adv. 2023 Oct 6;9(40):eadf6911.
Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2216836120.
Exp Mol Med. 2023 Feb 9.
Additive Manufacturing. 2023 Jan 30.
Adv Healthc Mater. 2023 May 22;e2300666.
Gut Microbes. 2023 Jan-Dec;15(1):2186114.
Therapeutic potential of Clostridium butyricum anticancer effects in colorectal cancer
Cell Rep. 2023 Dec ;43(1):113614.
Tubuloid differentiation to model the human distal nephron and collecting duct in health and disease
Cell Rep. 2023 Dec;43, 113614.
Tubuloid differentiation to model the human distal nephron and collecting duct in health and disease
Elife. 2023 May 11;12:e83867.
High-grade serous ovarian carcinoma organoids as models of chromosomal instability
J Transl Med. 2023 Jan 9;21(1):9.
Oncogene. 2023 Aug 17.
Persistent organic pollutants promote aggressiveness in prostate cancer
NPJ Precis Oncol. 2023 Nov 2;7(1):112.
Cell Commun Signal. 2023 Jan 23;21(1):22.
Extracellular matrix stiffness mediates uterine repair via the Rap1a/ARHGAP35/RhoA/F-actin/YAP axis
Breast Cancer Res. 2023 Aug 4;25(1):91.
Int J Radiat Oncol Biol Phys. 2023 Oct 9;S0360-3016(23)07970-1.
Radiosensitization by hyperthermia critically depends on the time interval
Phytomedicine. 2023 Jun.
Phytomedicine. 2023 Jun;114:154752.
Pharmaceutics. 2023 Jan 12;15(1):261.
Int J Cancer. 2023 Aug 25.
Int J Mol Sci. 2023 Feb 1;24(3):2830.
Int J Mol Sci. 2023 Jul 4;24(13):11048.
iScience. 2023 Jul 3.
Targeting ITGB4/SOX2-driven lung cancer stem cells using proteasome inhibitors
iScience. 2023 Sep 27;26(10):108076.
Front Endocrinol (Lausanne). 2023 Mar 13;14:1140888.
Establishment of papillary thyroid cancer organoid lines from clinical specimens
J Cell Mol Med. 2023 Jun 6.
Chem Biol Interact. 2023 Dec 1;386:110777.
Inflamm Bowel Dis. 2023 Feb 1;29(2):195-206.
Breast Cancer Res Treat. 2023 May 19.
Organoid models derived from patients with malignant phyllodes tumor of the breast
Eur J Pharm Sci. 2023 May 25;106481.
BMC Cancer. 2023 Aug 8;23(1):732.
iScience. 2023 Nov 4;26(12):108399.
Hum Cell. 2023 Mar 3.
PLoS One. 2023 Jan 5;18(1):e0279821.
Vet Comp Oncol. 2023 Mar;21(1):111-122.
Animal Model Exp Med. 2023 Oct;6(5):409-418.
Prev Nutr Food Sci. 2023 Sep 30;28(3):360-369.
bioRxiv. 2023 Aug 26;2023.02.24.529893.
STAR Protoc. 2023 Nov 20;4(4):102735.
Patent. CN117050934A 2023 Nov 14.
Patent. CN117074141A 2023 Nov 17.
Patent. CN116769836A 2023 Sep 19.
Patent. CN116966176A 2023 Oct 31.
Patent. KR20230169853A 2023 Dec 18.
Patent. CN116898855A 2023 Oct 20.
Patent. KR20230169838A 2023 Dec 18.
Patent. WO2023198677A1 2023 Oct 19.
Patent. CN116676264A 2023 Sep 01.
Patent. WO2023115048A1 2023 Jun 22.
Patent. CN115820562A 2023 Mar 21.
Patent. CN115558633A 2023 Jan 03.
Patent. CN114606192B 2023 Aug 08.
Patent. CN112852714B 2023 Jul 21.
Patent. CN114480250B 2023 Sep 08.
Patent. CN113943755B 2023 Sep 12.
Patent. CN115925944A 2023 Apr 07.
Patent. CN116987669A 2023 Nov 03.
Patent. CN115671142A 2023 Feb 03.
Patent. CN116731968A 2023 Sep 12.
Patent. CN112779209B 2023 Jan 24.
Patent. EP4291636A1 2023 Dec 20.
Patent. KR20230169821A 2023 Dec 18.
Patent. CN114606192A 2023-08-08.
Patent. CN114478706A 2023-08-01.
Patent. EP4260907A1 2023-10-18.
Nature. 2022 Aug;608(7923):609-617.
Truncated FGFR2 is a clinically actionable oncogene in multiple cancers
Nat Biotechnol. 2022 Jul 25.
Uncovering the mode of action of engineered T cells in patient cancer organoids
Mol Cancer. 2022 Mar 18;21(1):77.
Cell Stem Cell. 2022 Aug 19;S1934-5909(22)00338-1.
Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation
Nat Commun. 2022 Apr 4;13(1):1804.
Loss of Rnf31 and Vps4b sensitizes pancreatic cancer to T cell-mediated killing
Nat Commun. 2022 Jul 28;13(1):4364.
Nat Commun. 2022 May 13;13(1):2672.
Nat Commun. 2022 Jul 9;13(1):3998.
Nat Commun. 2022 Oct 5;13(1):5878.
Helicobacter pylori shows tropism to gastric differentiated pit cells dependent on urea chemotaxis
Adv Sci (Weinh). 2022 May;9(13):e2104301.
Self‐Organization of Tissue Growth by Interfacial Mechanical Interactions in Multilayered Systems
J Extracell Vesicles. 2022 Nov;11(11):e12280.
Small. 2022 Jan;18(2):e2104328.
Topographic Cues Guiding Cell Polarization via Distinct Cellular Mechanosensing Pathways
Cell Genom. 2022 Feb;2(2):100095.
Cancer Res. 2022 Feb 18;canres.CAN-21-2807-E.2021.
Proc Natl Acad Sci U S A. 2022 Nov 16;119(46):e2212057119.
EMBO Mol Med. 2022 Sep 7;14(9):e15687.
Fundamental Research. 2022 June 3;2022;12:37.
Cell Rep. 2022 Jun 28.
Cell Rep. 2022 Mar 1;38(9):110438.
BMP gradient along the intestinal villus axis controls zonated enterocyte and goblet cell states
Cell Rep. 2022 Aug 23;40(8):111266.
SF3B1 facilitates HIF1-signaling and promotes malignancy in pancreatic cancer
J Nanobiotechnology. 2022 Jul 15;20(1):326.
Differentiated kidney tubular cell-derived extracellular vesicles enhance maturation of tubuloids
Cell Mol Gastroenterol Hepatol. 2022;13(3):681-694.
Microbiol Spectr. 2022 Jun 29;10(3):e0105522.
NPJ Breast Cancer. 2022 Jul 12;8(1):81.
Commun Biol. 2022 Oct 14;5(1):1095.
Commun Biol. 2022 Oct 14;5(1):1094.
Commun Biol. 2022 Oct 28;5(1):1144.
Live slow-frozen human tumor tissues viable for 2D, 3D, ex vivo cultures and single-cell RNAseq
Int J Mol Sci. 2022 Jan 24;23(3):1286.
Unravelling Mechanisms of Doxorubicin-Induced Toxicity in 3D Human Intestinal Organoids
Neoplasia. 2022 May;27:100784.
Inhibition of HDACs reduces Ewing sarcoma tumor growth through EWS-FLI1 protein destabilization
iScience. 2022 Jan 6;25(2):103736.
iScience. 2022 Jan;25(2):103736.
Front Bioeng Biotechnol. 2022 Mar 1;10:820930.
Dis Model Mech. 2022 May 1;15(5):dmm049379.
Journal of Ovarian Research. 2022 Apr.
Using Genetically Encoded Fluorescent Biosensors to Interrogate Ovarian Cancer Metabolism
Cancers (Basel). 2022 May 19;14(10):2508.
Dynamic Visualization of TGF-β/SMAD3 Transcriptional Responses in Single Living Cells
Appl Biochem Biotechnol Appl Biochem Biotechnol. 2022 Jul 1.
STAR Protoc. 2022 Jul 31;3(3):101597.
Protocols to culture and harvest hepatic tumor organoids for metabolic assays
STAR Protoc. 2022 Aug 18;3(3):101639.
Differentiation and CRISPR-Cas9-mediated genetic engineering of human intestinal organoids
Fundamental Research. 2022 Jun.
J Vis Exp. 2022 Feb 12.
Establishment and Genetic Manipulation of Murine Hepatocyte Organoids
STAR Protoc. 2022 Jan 10;3(1):101079.
Utrecht University. 2022.
The beginning of a new life: characterizing somatic mutation accumulation in fetal stem cells
Patent. CN115261326A 2022 Nov 01.
Patent. CN114891735A 2022 Aug 12.
Patent. CN114736966A 2022 Jul 12.
Patent. WO2022173300A1 2022 Aug 18.
Patent. CN113186165B 2022 Jun 28.
Patent. CN114369573A 2022 Apr 19.
Patent. KR102403466B1 2022 May 30.
Patent. CN114075538B 2022 Nov 25.
Patent. CN114075539A 2022 Feb 22.
Patent. US2022154143A1 2022 May 19.
Patent. CN111117946B 2022 Mar 22.
Patent. US2022389379A1 2022 Dec 08.
Patent. EP3976760A1 2022 Apr 06.
Patent. CN114075538A 2022 Feb 22.
Patent. CN111117946A 2022-03-22.
Patent. CN111012913B 2022-09-09.
Patent. KR20210045300A 2022-05-30.
Cell Stem Cell. 2021 Jul 1;28(7):1221-1232.e7.
Exploring the human lacrimal gland using organoids and single-cell sequencing
Nat Commun. 2021 Jun 23;12(1):3896.
Nat Commun. 2021 Sep 17;12(1):5498.
Nat Commun. 2021 Mar 3;12(1):1407.
Somatic mutations and single-cell transcriptomes reveal the root of malignant rhabdoid tumours
Adv Sci (Weinh). 2021 Jan.
Adv Sci (Weinh). 2021 Feb.
Adv Sci (Weinh). 2021 Jan 6;8(4):2003205.
Nat Protoc. 2021 Oct;16(10):4633-4649.
Proceedings of the National Academy of Sciences. 2021 Dec 16;118 (51) e2117017118.
Proceedings of the National Academy of Sciences. 2021.
Bacterially produced R-spondin3 increases Hepatocyte Proliferation Independent of Liver Zonation
EMBO Mol Med. 2021 Jul 7;13(7):e13067.
Cysteamine-bicalutamide combination therapy corrects proximal tubule phenotype in cystinosis
Proc Natl Acad Sci U S A. 2021 Feb 16;118(7):e2017115118.
Nature Protocols. 2021 Jan;16(1):182-217.
Cell Rep. 2021 Mar 9;34(10):108819.
Cell Rep. 2021 Jul 20;36(3):109351.
Cell Rep. 2021 Aug 24;36(8):109568.
Cell Rep. 2021 Jul 20;36(3):109351.
Adv Healthc Mater. 2021 Aug;10(16):e2100821.
Cell Death Dis. 2021 Jan 18;12(1):95.
EMBO Reports. 2021 Oct 25;22:e52058.
Modelling of Primary Ciliary Dyskinesia using Patient-derived Airway Organoids
EMBO Rep. 2021 Dec 6;22(12):e52058.
Modelling of primary ciliary dyskinesia using patient-derived airway organoids
Nanoscale. 2021 May 13;13(18):8614-8622.
Ordered inverse-opal scaffold based on bionic transpiration to create a biomimetic spine
J Clin Endocrinol Metab. 2021 Apr 23;106(5):1410-1426.
Organoid Cultures Derived From Patients With Papillary Thyroid Cancer
Arch Toxicol. 2021 Aug;95(8):2691-2718.
Sci Rep. 2021 Apr 15;11(1):8206.
Interleukin-37 regulates innate immune signaling in human and mouse colonic organoids
Chem Eng Sci. 2021 Jul 20;Volume 238, 116632.
Microfluidic droplets as structural templates for Matrigel to enable 1-week large organoid modeling
Cancer Biol Med. 2021 Mar 12;18(3):750-762.
Mol Hum Reprod. 2021 May 29;27(6):gaab033.
Two alternative methods for the retrieval of somatic cell populations from the mouse ovary
Biochem Biophys Res Commun. 2021 Oct 8;573:151-157.
Human embryonic stem cell-derived melanocytes exhibit limited immunogenicity
STAR Protoc. 2021 Dec 8;2(4):100997.
Generation of mixed murine organoids to model cellular interactions
bioRxiv. 2021 May 6;442764.
Behavioral-transcriptomic landscape of engineered T cells targeting human cancer organoids
bioRxiv. 2021 Mar 9.
c-Myc plays a key role in IFN-γ induced persistence of Chlamydia trachomatis
bioRxiv. 2021 Apr 26.
Self-organization of Tissue Growth by Interfacial Mechanical Interactions in Multi-layered Systems
JOURNAL OF SHANGHAI JIAO TONG UNIVERSITY (MEDICAL SCIENCE). 2021;41(8):1017-1024.
Establishment and optimization of co-culture technology for breast cancer organoids
Cell Tiss. Biol. 2021 Sep;15, 554–562.
University of Bergen. 2021 Jun.
Universiteit Utrecht. 2021 Apr.
Patent. CA3181090A1 2021 Dec 09.
Patent. CN106967672B 2021 Jan 26.
Patent. CN112578116A 2021 Mar 30.
Patent. EP3365373B1 2021 Mar 10.
Patent. CN113186165A 2021 Jul 30.
Patent. CN112852714A 2021 May 28.
Patent. CN109652376A 2021-10-15.
Patent. CN112841168A 2021-12-10.
Nature. 2020 Apr;580(7802):269-273.
Mutational Signature in Colorectal Cancer Caused by Genotoxic Pks + E. Coli
Nature. 2020 Dec;588(7839):664-669.
Creation of bladder assembloids mimicking tissue regeneration and cancer
Cell. 2020 Jan 23;180(2):233-247.e21.
Cell. 2020 May 7;S0092-8674(20)30501-8.
High-Resolution mRNA and Secretome Atlas of Human Enteroendocrine Cells
Cell Res. 2020 Feb;30(2):163-178.
ILF3 is a substrate of SPOP for regulating serine biosynthesis in colorectal cancer.
Nat Microbiol. 2020 Nov;5(11):1390-1402.
Nat Biomed Eng. 2020 Sep;4(9):863-874.
High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays
Nat Biomed Eng. 2020 Sep;4(9):875-888.
Cell Stem Cell. 2020 Mar 5;26(3):431-440.e8.
Genome-Scale CRISPR Screening in Human Intestinal Organoids Identifies Drivers of TGF-β Resistance
Cell Stem Cell. 2020 Apr 2;26(4):503-510.e7.
CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank
Cell Stem Cell. 2020 Apr 2;26(4):569-578.e7.
Plasticity of Lgr5-Negative Cancer Cells Drives Metastasis in Colorectal Cancer
Cell Stem Cell. 2020 Nov 5;27(5):840-851.e6.
Next-Generation Surrogate Wnts Support Organoid Growth and Deconvolute Frizzled Pleiotropy In Vivo
Nat Commun. 2020 May 19;11(1):2493.
The Mutational Impact of Culturing Human Pluripotent and Adult Stem Cells
Nat Commun. 2020 Mar 11;11(1):1310.
An Organoid Biobank for Childhood Kidney Cancers That Captures Disease and Tissue Heterogeneity
Nat Commun. 2020 Dec 22;11(1):6438.
MaTAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression
Nat Commun. 2020 Sep 15;11(1):4629.
Adv Sci (Weinh). 2020 Jul 26;7(18):2001797.
Polyisocyanide Hydrogels as a Tunable Platform for Mammary Gland Organoid Formation
Nat Protoc. 2020 Oct;15(10):3380-3409.
Establishment of patient-derived cancer organoids for drug-screening applications
Cancer Res. 2020 Apr 1;80(7):1486-1497.
EMBO Mol Med. 2020 Feb 11.
Genome Res. 2020 Sep;30(9):1258-1273.
Environ Health Perspect. 2020 Jun;128(6):67008.
Elife. 2020 Apr 21;9:e52511.
Biofabrication. 2020 May 19.
Use of Inkjet-Printed Single Cells to Quantify Intratumoral Heterogeneity
PLoS Pathog. 2020 Apr 13;16(4):e1008498.
Br J Cancer. 2020 May;122(11):1673-1685.
CSN6-TRIM21 Axis Instigates Cancer Stemness During Tumorigenesis
Sci Rep. 2020 Jul 31;10(1):12991.
Sci Rep. 2020 Dec 8;10(1):21475.
Development of a human primary gut-on-a-chip to model inflammatory processes
Cancer Cell Int. 2020 Mar 18;20:86.
Breast Cancer Organoids From a Patient With Giant Papillary Carcinoma as a High-Fidelity Model
Infect Immun. 2020 Apr 13;IAI.00017-20.
PLoS One. 2020 May 18;15(5):e0231588.
STAR Protocols. 2020 Jun 19;Volume 1, Issue 1.
ACS Appl. Bio Mater. 2020 Sep;9, 6273–6283.
Rapid Microfluidic Formation of Uniform Patient-Derived Breast Tumor Spheroids
Curr Protoc Immunol. 2020 Sep;130(1):e106.
Establishment and Culture of Human Intestinal Organoids Derived from Adult Stem Cells
Cell Rep Med. 2020 Dec 22;1(9):100161.
An Automated Organoid Platform with Inter-organoid Homogeneity and Inter-patient Heterogeneity
STAR Protoc. 2020 Dec 28;2(1):100239.
Protocol for generation of lung adenocarcinoma organoids from clinical samples
STAR Protoc. 2020 Dec 4;1(3):100192.
Establishment of Pancreatic Organoids from Normal Tissue and Tumors
2020 Oct.
Evaluating CRISPR-based Prime Editing for cancer modeling and CFTR repair in intestinal organoids
Patent. CN111500540A 2020 Aug 07.
Patent. CN111012913A 2020 Apr 17.
Nat Med. 2019 May;25(5):838-849.
An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity.
Nat Biotechnol. 2019 Mar;37(3):303-313.
Tubuloids derived from human adult kidney and urine for personalized disease modeling.
Cancer Discov. 2019 Jul;9(7):852-871.
Oral Mucosal Organoids as a Potential Platform for Personalized Cancer Therapy.
Nat Commun. 2019 Aug 23;10(1):3800.
Rebalancing of actomyosin contractility enables mammary tumor formation upon loss of E-cadherin.
Proc Natl Acad Sci U S A. 2019 Dec 9.
Pancreatic cancer organoids recapitulate disease and allow personalized drug screening.
Cell Mol Life Sci. 2019 Dec 14.
J Clin Med. 2019 Nov 5;8(11).
Biol Proced Online. 2019 Jun 15;21:12.
Establishment and Morphological Characterization of Patient-Derived Organoids from Breast Cancer.
Patent. CN109837242A 2019 Jun 04.
Patent. CN109679915A 2019 Apr 26.
Patent. US2019367872A1 2019 Dec 05.
Cell. 2018 Jan 11;172(1-2):373-386.e10.
A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity
Cell. 2018 Nov 29;175(6):1591-1606.e19.
Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids.
Adv Mater. 2018 Sep 10;e1801621.
Nat Microbiol. 2018 Jul;3(7):814-823.
Modelling Cryptosporidium infection in human small intestinal and lung organoids.
Cancer Discov. 2018 Sep 13.
Prediction of DNA Repair Inhibitor Response in Short Term Patient-Derived Ovarian Cancer Organoids.
Nat Protoc. 2018 Jan;13(1):59-78.
Nat Protoc. 2018 Feb;13(2):235-247.
Vet Immunol Immunopathol. 2018 Dec;206:16-24.
Patent. WO2018091677A1 2018 May 24.
Oncotarget. 2017 Dec 28;9(12):10375-10387.
Mater Sci Eng C Mater Biol Appl. 2017 Sep 1;78:443-451.
Am J Clin Exp Urol. 2017 Nov 9;5(3):25-33.
Organoid culture of human prostate cancer cell lines LNCaP and C4-2B
CAM. 2017 Sep 29.
Patent. CN106834212A 2017 Jun 13.
Patent. CN106967672A 2017 Jul 21.
Nature. 2016 Nov 24;539(7630):560-564.
Designer matrices for intestinal stem cell and organoid culture
Nat Protoc. 2016 Feb;347-58.
Organoid culture systems for prostate epithelial and cancer tissue.
Natl Med J China. 2015 Nov 3;Vol. 95, No.41 3373-3377.
Section Infection and Immunity. .
Role of the proto-oncogene c-Myc in the development of Chlamydia trachomatis
| 分子量 | 320.26 |
| 分子式 | C14H21N3O.2HCl |
| CAS号 | 129830-38-2 |
| 溶解性(仅列举部分溶剂) | Water ≥ 60 mg/mL DMSO ≥ 35 mg/mL |
| 储存条件 |
粉末型式 -20°C 3年;4°C 2年 溶于溶剂 -80°C 6个月;-20°C 1个月 |
| 运输方式 | 冰袋运输,根据产品的不同,可能会有相应调整。 |
*不同实验中用到的溶剂可能不同,具体实验所需溶剂及溶解方法请参考相关文献描述。
Y-27632是一种具有口服活性的ATP竞争性的ROCK(Rho相关且含有卷曲螺旋结构域的蛋白激酶)抑制剂,主要作用于 ROCK-I 和 ROCK-II, Ki 值分别为 220 nM 和 300 nM。Y-27632对 ROCK家族成员的亲和力远高于其他Rho相关激酶,其对ROCK的亲和力是柠檬酸激酶和蛋白激酶 PKN的20-30倍。
Y-27632是一种类器官和干细胞培养过程中不可或缺的小分子抑制剂。Y-27632 可以阻止干细胞的凋亡,从而维持其多潜能性和自我更新能力。Y-27632 可以抑制胚胎干细胞(ESC)、间充质干细胞(MSC)、诱导多能干细胞(iPSC)等多种干细胞的凋亡并促进其增殖。在角膜保存过程中,Y-27632 能促进角膜缘干细胞(LSCs)的活力和克隆形成能力。此外,Y-27632 可通过上皮-间充质过渡样调节引发人诱导多能干细胞(iPSC)选择性地分化为间胚层谱系。Y-27632 也是多种类器官培养基中重要的组分,包括结直肠癌类器官、肝癌类器官和乳腺癌类器官等肿瘤类器官,以及肝脏类器官、脑类器官、肾脏类器官等正常类器官。
下述溶液配置方法仅为基于分子量计算出的理论值。不同产品在配置溶液前,需考虑其在不同溶剂中的溶解度限制。
| 浓度/溶剂体积/质量 | 1 mg | 5 mg | 10 mg |
|---|---|---|---|
| 1 mM | 3.1225 mL | 15.6123 mL | 31.2246 mL |
| 5 mM | 0.6245 mL | 3.1225 mL | 6.2449 mL |
| 10 mM | 0.3122 mL | 1.5612 mL | 3.1225 mL |
*吸湿的DMSO对产品的溶解度有显著影响,请使用新开封的DMSO;
请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
| 细胞系 | 人肠道类器官(ASC-5a和ASC-6a) |
| 方法 | For derivation of clonal lines, cells were sorted by fluorescence-activated cell sorting (FACS) and grown at a density of 50 cells per μl in BME. The ROCK inhibitor Y-27632 (10 μM; AbMole, M1817) was added for the first week of growth. Upon reaching a size of >100 μm diameter, organoids were picked and transferred to one well per organoid. All organoid lines were regularly tested to rule out mycoplasma infection and authenticated using SNP profiling. No statistical methods were used to predetermine sample size. The experiments were not randomized and the investigators were not blinded to allocation during experiments and outcome assessment. |
| 浓度 | 10 μM |
| 处理时间 | 7 Days |
* 上述方法来自公开文献,仅供相同目的实验参考。如实验目的、材料、方法不同,请参考其他文献。
建议您制定动物给药及实验方案时,尽量参考已发表的相关实验文献(溶剂种类及配比众多,简单地溶解目的化合物,并不能解决动物给药依从性、体内生物利用度、组织分布等相关问题,未必能保证目的化合物在动物体内充分发挥生物学效用)。
体内实验的工作液,建议您现用现配,当天使用;如在配制过程中出现沉淀、析出现象,可以通过超声和(或)加热的方式助溶。
切勿一次性将产品全部溶解。
请在下面的计算器中,输入您的动物实验相关数据并点击计算,即可得到该实验的总需药量和工作液终浓度。
例如您给药剂量是10 mg/kg,平均每只动物的体重为20 g,每只动物的给药体积是100 μL,动物数量为20只,则该动物实验的总需药量为4 mg,工作液终浓度为2 mg/mL。
1:鉴于实验过程的损耗,建议您至少多配1-2只动物的量;
2:为该产品最终给药时的浓度。
| 动物模型 | 肝纤维化大鼠 |
| 配制 | Y-27632溶解于生理盐水中(终浓度为2%) |
| 剂量 | 30 mg/kg/天,持续4周 |
| 给药处理 | 经口给药(灌胃) |
* 上述方法来自公开文献,仅供相同目的实验参考。如实验目的、材料、方法不同,请参考其他文献。
Y-27632 是一种高选择性、ATP 竞争性的 Rho 相关卷曲螺旋蛋白激酶(ROCK)抑制剂,可靶向作用于ROCK1和ROCK2。Y-27632(AbMole,M1817)是原代细胞、干细胞和类器官培养所需的重要小分子化合物之一。
自2015年起,全球使用AbMole的Y-27632(M1817)发表文章或专利的部分署名科研单位和公司有:荷兰皇家艺术与科学院Hubrecht 研究所(全球第一个类器官研究中心)、荷兰Oncode研究所、斯坦福大学、英国剑桥剑桥大学、加州大学伯克利分校、哈佛大学医学院、苏黎世联邦理工学院、冷泉港实验室、欧洲分子生物学实验室(EMBL)、苏黎世大学、瑞士洛桑洛桑联邦理工学院、柏林夏里特医学院、比利时布鲁塞尔自由大学(ULB)、鲁汶大学、荷兰癌症研究所、韩国延世大学、英国惠康桑格研究所、美国肯塔基大学、加拿大哥伦比亚大学、美国贝勒医学院、荷兰乌得勒支大学、德国莱布尼茨灵长类动物研究所、荷兰玛西玛公主儿童肿瘤医学中心、美国基因泰克公司、罗氏制药、荷兰伊拉斯谟医学、首尔国立大学、柏林自由大学、奥地利因斯布鲁克医科大学、德国慕尼黑大学、荷兰阿姆斯特丹大学、美国纽约大学、清华大学、北京大学、香港中文大学、浙江大学、复旦大学、上海交通大学、华中科技大学、四川大学华西医学院、西安交通大学、中南大学湘雅医院、......还有更多将不断涌现!
一、 Y-27632的分子作用机理
Y-27632(AbMole,M1817)通过竞争性地结合ROCK的ATP结合位点,可逆地抑制其激酶活性。在细胞内,ROCK 处于Rho GTPase信号通路的下游,主要参与调节细胞的收缩、迁移、黏附以及细胞周期进程等重要的生物学过程。当 Rho GTPase 被激活时,它会与 ROCK 结合并使其活化,活化后的 ROCK 能够磷酸化多种底物蛋白,例如肌球蛋白轻链磷酸酶(MLCP)的调节亚基 MYPT1。磷酸化后的 MYPT1 会降低 MLCP 的活性,导致肌球蛋白轻链(MLC)磷酸化水平升高,进而引起细胞骨架的收缩和重构。而Y-27632 通过抑制 ROCK 的活性,能够阻止 MYPT1 的磷酸化,维持 MLCP 的活性,使MLC去磷酸化,最终导致细胞骨架的松弛和相关细胞行为的改变。 此外,Y-27632对ROCK的抑制作用也会间接影响细胞的增殖和死亡。
二、Y-27632的科研应用
1. Y-27632用于原代细胞的培养
细胞在体内处于一个非常复杂和精密的、由胞外基质(ECM)构成的支撑网络中。细胞通过整合素与特定的ECM成分(如胶原蛋白、纤连蛋白、层粘连蛋白)结合,这不仅提供了物理锚定,还持续传递着关键的生存信号(Survival Signals)。这些信号通过激活PI3K/Akt和FAK(黏着斑激酶) 等通路来抑制凋亡程序。一旦细胞被分离出来,整合素介导的信号中断,会导致Rho GTPase被激活,进而强力激活ROCK。而激活的ROCK会磷酸化肌球蛋白轻链(MLC),并抑制MLC磷酸酶,导致MLC持续磷酸化。这会引起肌动球蛋白收缩力的急剧增强,细胞骨架严重紊乱,细胞膜出现剧烈的、不可控的皱缩(blebbing)和细胞凋亡,上述过程被形象的命名为失巢凋亡(Anoikis)[1]。Y-27632(AbMole,M1817)作为ROCK的强效抑制剂,在作用于ROCK后,MLC磷酸化水平显著降低,肌球蛋白的收缩活动恢复正常。这使得细胞骨架在脱离ECM后仍能保持相对稳定的结构,阻止了凋亡性膜皱缩的发生,为细胞重新附着创造了条件。有文献使用Y-27632培养从食蟹猴中分离的原代角膜内皮细胞(MCECs),结果显示Y-27632有效提高了角膜内皮细胞的数量并抑制了细胞凋亡,促进MCECs的粘附[2]。此外,Y-27632还可以通过选择性阻断真皮细胞的粘连斑,简化原代表皮细胞的分离程序,且经过上述方法分离得到的表皮细胞具有较强的再生能力,可移植到小鼠体内快速建立表皮组织[3]。
图 1. 失巢凋亡示意图[1]
原代细胞培养应用范例详解
ACS Biomater Sci Eng. 2025 Jan 13;11(1):451-462.
荷兰鹿特丹伊拉斯谟医学中心的科研团队在上述论文中设计了一种3D 打印的多孔流通板,该流通板具有较高的生物相容性,可支持细胞的微流控培养。为验证上述孔板的可用性,实验人员将原代支气管上皮细胞(hPBEC)和原代肺微血管内皮细胞(hMVEC)分别在接种到孔板的顶端和基底侧共培养,发现该孔板支持hPBEC的粘液纤毛分化和hMVEC的快速增殖。在上述两种原代细胞的培养中,实验人员都使用了由AbMole提供的Y-27632(AbMole,M1817),浓度为5μM。

图 2.原代HMVEC与hPBEC的共培养[4]
2. Y-27632用于干细胞和类器官的培养
与原代细胞类似,干细胞在分离、基因编辑、传代、保存和分化诱导的等多个过程中也存在着失巢凋亡的现象。因此,Y-27632(AbMole,M1817)也常用于多种干细胞的培养与研究,包括成体干细胞、诱导多能干细胞(iPSC)和胚胎干细胞(ESC)等。例如Y-27632能够促进大鼠骨髓间充质干细胞(BMSCs)的增殖,加速细胞周期进程,提高细胞的分裂和增殖能力[5]。也有文章发现在人诱导多能干细胞(hiPSCs)来源的原始神经上皮细胞(NECs)中添加Y-27632,能够显著提高细胞解离后的贴壁存活率,降低细胞凋亡率,并促进细胞向多巴胺能神经前体细胞分化[6]。还有文献报导Y-27632(AbMole,M1817)可以用于猪气道干细胞的长期培养和无饲养层扩增,并且保留了干细胞的分化能力[7]。此外,Y-27632作为一种Rho激酶抑制剂,还在干细胞的冻存和复苏中具有重要作用,主要通过减少细胞凋亡和提高细胞存活率来增强干细胞的活性。例如Y-27632可有效提高骨髓间充质干细胞解冻后的活力,并且这种提高具有剂量依赖性,当培养基中的Y-27632的浓度为10 μM 时,效果达到峰值[8]。Y-27632(10 μM)还可有效提高胚胎干细胞的复苏存活率[9]。
类器官是多能干细胞(hPSCs)或成体干细胞(ADSCs)衍生而来的,能够模拟真实器官功能的细胞群。Y-27632(AbMole,M1817)可促进细胞增殖、调节类器官形成过程中的细胞分化和形态发生。例如在小鼠小肠类器官的培养中,在细胞铺板时添加10 μM的Y-27632,能够显著提高类器官的形成效率和细胞的存活率[10],Y-27632也是肠类器官长期培养和冻存所需的关键组分之一[11]。Y-27632还可以通过抑制小鼠唾液腺类器官中的细胞解离,从而减少细胞铁死亡的发生[12]。在一些肿瘤类器官的培养中同样需要添加Y-27632。例如前列腺癌、结肠癌、胃癌、卵巢癌以及循环肿瘤细胞衍生的类器官。2014年,AbMole的两款抑制剂分别被西班牙国家心血管研究中心和美国哥伦比亚大学用于动物体内实验,相关科研成果发表于顶刊 Nature 和 Nature Medicine。
干细胞和类器官培养应用范例详解
1. Nature. 2024 Aug;632(8024):411-418. (IF = 48.5)
瑞士苏黎世联邦理工学院的科研团队在上述文章中开发了一种基于体内 CRISPR 激活筛选的方法,旨在系统性研究肝细胞与转移肿瘤细胞之间的相互作用,以识别调控肝脏转移定植的宿主来源因子。核心发现如下:实验人员鉴定出肝细胞表面的plexin B2是结直肠癌、胰腺癌和黑色素瘤肝转移的关键调控因子,其通过与肿瘤细胞表面的 IV 类 semaphorins 结合,促进转移灶形成。plexin B2 与 semaphorins 的相互作用可上调转录因子 KLF4,促进肿瘤细胞获得上皮表型(上皮化),这是转移细胞适应肝脏微环境的必要过程。阻断 plexin B2-semaphorin 轴可抑制上述肿瘤的肝转移定植。由AbMole提供的Y-27632(AbMole,M1817)在上述实验中主要用于维持细胞存活和抑制细胞凋亡,尤其在类器官培养和细胞转染过程中发挥重要作用。在肿瘤类器官(如 AKPS、APTAK)的分离和培养中,添加 Y-27632 可减少单细胞分离后的细胞死亡,提高类器官形成效率;在 CRISPR 介导的基因编辑(如 Smad4 敲除)过程中,Y-27632 可增强细胞对转染操作的耐受性,维持细胞活力[13]。
图 3. In vitro screen and Plexin B2 overexpression[13]
2. Nature. 2022 Aug;608(7923):609-617. (IF = 48.5)
荷兰癌症研究所(Netherlands Cancer Institute)、荷兰 Oncode 研究所的科研人员在上述论文中探究了纤维细胞生长因子受体 2(FGFR2)的截断突变,并揭示其在多种肿瘤中的致癌作用。实验人员鉴定出 FGFR2 第 18 外显子(E18)截断突变(FGFR2ΔE18)是强效致癌驱动因子。该突变通过去除 C 端调控区域,导致受体持续激活,独立驱动肿瘤发生。肿瘤中的 FGFR2ΔE18 的产生机制多样,包括 I17/E18 区域的基因融合、E1-E17 部分扩增、E18 无义突变或移码突变等,这些突变在胆管癌、乳腺癌、胃癌等多种肿瘤中存在。FGFR2ΔE18 通过激活 MAPK、PI3K-AKT-mTOR 等信号通路促进细胞增殖和存活,且无需其他驱动基因协同,比全长 FGFR2位点突变更具有致癌性。来自AbMole的Y-27632(AbMole,M1817)被科研人员用于多个实验。在小鼠乳腺上皮细胞(NMuMG)、Human肿瘤细胞系(如 KATO-III)及类器官培养中,Y-27632 可减少单细胞分离后的失巢凋亡,提高细胞存活和克隆形成效率。在 CRISPR 介导的基因编辑(如 FGFR2 突变体构建)或病毒转染过程中,Y-27632 可增强细胞对操作的耐受性,维持细胞活力。
图 4. Human cancer cell lines depend on FGFR2ΔE18 variants[14]
3. Nat Med. 2019 May;25(5):838-849. (IF = 50.0)
荷兰Hubrecht研究所(Hubrecht Institute)和乌得勒支大学医学中心(UMC Utrecht)的研究团队在该文章中构建了一个卵巢癌类器官研究平台,旨在解决卵巢癌(OC)研究中缺乏能忠实反映肿瘤异质性和临床特征的体外模型的问题。实验人员证实卵巢癌类器官在组织学、基因组和基因表达水平上与来源肿瘤高度一致,保留了核异型性、生物标志物表达(如 PAX8、p53)等特征,且长期传代后仍维持拷贝数变异(CNV)、反复突变等基因组特征,能捕获肿瘤内和肿瘤间的异质性。在卵巢癌组织解离和类器官培养中,AbMole的Y-27632(AbMole,M1817)被实验人员用于培养类器官,以减少凋亡并提高类器官的建立效率[15]。
图 5. Subtype diversity and histological characterization of OC organoids[15]
4. Nature. 2016 Nov 24;539(7630):560-564. (IF = 48.5)
瑞士洛桑联邦理工学院(EPFL)的科研团队在上述文章中开发了一种基于合成水凝胶网络的模块化设计方法,旨在调节调控肠道干细胞(ISC)扩增和类器官形成的关键细胞外基质(ECM)参数。实验人员通过 polyethylene glycol(PEG)水凝胶模拟天然ECM的物理和生化特性,发现不同阶段的ISC行为依赖于特定的基质环境。科研人员还设计了力学动态变化的水凝胶,其初始硬度适合 ISC 扩增,随后逐渐软化以支持类器官形成。AbMole的Y-27632(AbMole,M1817)在本文中被用于减少单细胞培养过程中的细胞凋亡以及促进类器官的形成[16]。
图 6. Matrix mechanical properties control ISC proliferation[16]
5. Nature. 2020 Dec;588(7839):664-669.(IF = 48.5)
韩国浦项科技大学(Pohang University of Science and Technology)、韩国首尔国立大学的科研人员在该文章中构建了一种新型的膀胱肿瘤类器官,用于在体外模拟肿瘤微环境。实验人员通过用基质成分重构组织干细胞来创建多层膀胱“组合体”,以模拟具有上皮围绕基质和外层肌肉层的、有组织结构的膀胱癌类器官,旨在解决传统类器官模型无法模拟成熟器官结构和相关组织微环境的问题。该类器官可用于模拟肿瘤的发生发展、免疫细胞浸润(如 CD8⁺ T 细胞介导的肿瘤杀伤)及药物筛选。在上述类器官的构建过程中,实验人员使用了由AbMole提供的Y-27632(AbMole,M1817)[17]。
图 7. Generation of 3D reconstituted bladder assembloids[17]
6. Cell. 2024 Feb 1;187(3):712-732.e38. (IF = 42.5)
荷兰Princess Máxima儿科肿瘤中心、荷兰Hubrecht研究所(Hubrecht Institute)的科研人员构建了一种大脑类器官(FeBOs),并发现FeBOs 具有三层结构:外周为SOX2⁺/Ki-67⁺神经祖细胞,中间为 HOPX⁺的外层放射状胶质细胞,中心为 TUJ1⁺/DCX⁺神经元。科研人员通过构建上述类器官重现了体内神经发生的分层组织。FeBOs可稳定传代超过8个月,体积扩大到15,000 倍,且保留原组织的区域特性。在类器官构建的过程中实验人员使用了来自AbMole的Y-27632(AbMole,M1817),在干细胞(hESC)诱导生成皮质球(PSC-cortical spheroids)的初始阶段,添加 Y-27632 可减少单细胞培养时的凋亡,提高细胞存活效率[18]。
图 8. FeBOs capture regional brain identities of the tissue of origin[18]
Since 2015, the research institutions and companies worldwide that have published articles or patents using AbMole's Y-27632 (M1817) with partial attribution include: Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (the world's first research institution to develop organoids)、Oncode Institute、Stanford University、University of Cambridge、Harvard Medical School、University of California, Berkeley、ETH Zurich、University of Zurich、Ecole Polytechnique Fédérale de Lausanne、Université Libre de Bruxelles (ULB)、University of Leuven、 Charité-Universitätsmedizin Berlin、European Molecular Biology Laboratory (EMBL) 、Netherlands Cancer Institute、Yonsei University、Wellcome Sanger Institute、University of Kentucky、University of British Columbia、Baylor College of Medicine、Utrecht University、Leibniz Institute for Primate Research、Princess Máxima Center for Pediatric Oncology、Genentech Inc.、Roche Innovation Center Basel、College of Medicine, Erasmus Medical Center、Cold Spring Harbor Laboratory、Seoul National University、Medical University of Innsbruck、Ludwig-Maximilians-Universität München、 University of Amsterdam、New York University、Freie Universität Berlin、Tsinghua University、Peking University、Chinese University of Hong Kong、Zhejiang University、Shanghai Jiao Tong University、Fudan University、Xi'an Jiaotong University、Huazhong University of Science and Technology、West China Hospital, Sichuan University、Xiangya Hospital...More and more!
参考文献及鸣谢
[1] M. L. Taddei, E. Giannoni, T. Fiaschi, et al., Anoikis: an emerging hallmark in health and diseases, The Journal of pathology 226(2) (2012) 380-93.
[2] N. Okumura, M. Ueno, N. Koizumi, et al., Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor, Investigative ophthalmology & visual science 50(8) (2009) 3680-7.
[3] J. Wen, T. Zu, Q. Zhou, et al., Y-27632 simplifies the isolation procedure of human primary epidermal cells by selectively blocking focal adhesion of dermal cells, Journal of tissue engineering and regenerative medicine 12(2) (2018) e1251-e1255.
[4] C. Iriondo, S. Koornneef, K. P. Skarp, et al., Simple-Flow: A 3D-Printed Multiwell Flow Plate to Coculture Primary Human Lung Cells at the Air-Liquid Interface, ACS biomaterials science & engineering 11(1) (2025) 451-462.
[5] Xiao Liu, Zhengzheng Zhang, Xianliang Yan, et al., The Rho kinase inhibitor Y-27632 facilitates the differentiation of bone marrow mesenchymal stem cells, 45(6) (2014) 707-714.
[6] Y. Li, J. Xu, C. Jiang, et al., [Rho kinase inhibitor Y27632 promotes survival of human induced pluripotent stem cells during differentiation into functional midbrain dopaminergic progenitor cells in vitro], Nan fang yi ke da xue xue bao = Journal of Southern Medical University 44(2) (2024) 236-243.
[7] T. P. Dale, E. Borg D'anastasi, M. Haris, et al., Rock Inhibitor Y-27632 Enables Feeder-Free, Unlimited Expansion of Sus scrofa domesticus Swine Airway Stem Cells to Facilitate Respiratory Research, Stem cells international 2019 (2019) 3010656.
[8] Boon Chin Heng, Effect of Rho-associated kinase (ROCK) inhibitor Y-27632 on the post-thaw viability of cryopreserved human bone marrow-derived mesenchymal stem cells, Tissue and Cell 41(5) (2009) 376-380.
[9] X. Li, G. Meng, R. Krawetz, et al., The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation, Stem cells and development 17(6) (2008) 1079-85.
[10] C. Wu, F. Yang, H. Zhong, et al., Obesity-enriched gut microbe degrades myo-inositol and promotes lipid absorption, Cell host & microbe 32(8) (2024) 1301-1314.e9.
[11] Sung-Hoon Han, Sehwan Shim, Min-Jung Kim, et al., Long-term culture-induced phenotypic difference and efficient cryopreservation of small intestinal organoids by treatment timing of Rho kinase inhibitor, 23(6) (2017) 964.
[12] Kichul Kim, Sol Min, Daehwan Kim, et al., A rho kinase (ROCK) inhibitor, Y-27632, inhibits the dissociation-induced cell death of salivary gland stem cells, 26(9) (2021) 2658.
[13] C. Borrelli, M. Roberts, D. Eletto, et al., In vivo interaction screening reveals liver-derived constraints to metastasis, Nature 632(8024) (2024) 411-418.
[14] D. Zingg, J. Bhin, J. Yemelyanenko, et al., Truncated FGFR2 is a clinically actionable oncogene in multiple cancers, Nature 608(7923) (2022) 609-617.
[15] O. Kopper, C. J. de Witte, K. Lõhmussaar, et al., An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity, Nature medicine 25(5) (2019) 838-849.
[16] N. Gjorevski, N. Sachs, A. Manfrin, et al., Designer matrices for intestinal stem cell and organoid culture, Nature 539(7630) (2016) 560-564.
[17] E. Kim, S. Choi, B. Kang, et al., Creation of bladder assembloids mimicking tissue regeneration and cancer, Nature 588(7839) (2020) 664-669.
[18] D. Hendriks, A. Pagliaro, F. Andreatta, et al., Human fetal brain self-organizes into long-term expanding organoids, Cell 187(3) (2024) 712-732.e38.
以上参考文献由AI整理,仅供参考,AbMole 尚未独立确认这些文献的准确性。